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ABSTRACT

As businesses become increasingly reliant on big data analytics,
it becomes increasingly important to fest the choices made within
the data miners. This paper reports lessons learned from the BigSE
Lab, an industrial/university collaboration that augments industrial
activity with low-cost testing of data miners (by graduate students).

BigSE is an experiment in academic/ industrial collaboration.
Funded by a gift from LexisNexis, BigSE has no specific deliver-
ables. Rather, it is fueled by a research question “what can industry
and academia learn from each other?”. Based on open source data
and tools, the output of this work is (a) more exposure by commer-
cial engineers to state-of-the-art methods and (b) more exposure
by students to industrial text mining methods (plus research papers
that comment on methods on how to improve those methods).

The results so far are encouraging. Students at BigSE Lab have
found numerous “standard” choices for text mining that could be
replaced by simpler and less resource intensive methods. Further,
that work also found additional text mining choices that could sig-
nificantly improve the performance of industrial data miners.
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1 Introduction

Much has been written about the application of data mining to
software engineering. It is now routine to see at major SE con-
ferences that a third (or more) of the papers used data miners to
augment their analysis. Clearly, data mining has much to teach
software engineering, but what about the other way around? What
can software engineers teach data mining? What are the lessons
learned from decades of SE that can improve data mining?

In 1975, Fred Brooks noted that half the effort of a software
project is spent in testing. In an update to that book [11], written
twenty years later, Brooks still asserted that testing remains a large
task within any project. Accordingly, we should expect that when
industrial data mining providers ship analytic tools, they should
conduct extensive testing of those tools prior to release.

Some parts of commercial data mining tools are thoroughly tested
prior to release (e.g. distributing tasks across a CPU farm or array
of disk storage). However, other parts may not be so extensively
explored. For example, LexisNexis is an international commercial
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company that offers Big Data solutions to clients. LexisNexis has
invested time writing support and mining tools to assist with E-
discovery (discussed in the next section). When LexisNexis ships
E-Discovery products, those products contain numerous text min-
ing operators to handle (for example) tokenization, featurization,
normalization, classification, etc. Once a set of operators offers
promising results, standard practice is to configure the text mining
tool with those operators, then ship the resulting product.

LexisNexis contacted NcState with the question of “how can
we validate if the operators we select for text mining are satisfac-
tory?”. This is a tricky problem in a commercial environment since
an extensive exploration of data mining operators for tokenization,
featurization, normalization, classification, etc. is a massive task.
Having run such studies for many years [17], we can assert that this
is mostly a trial-and-error process with a high percentage of errors.
Commercial practitioners, responding to market pressures, may not
be willing to explore this space of option since the large numbers
of negative results are not consistent with an approach that quickly
delivers incremental value to the market:

e The advantage of this approach is that, using it, commercial
companies can maintain or extend their revenue stream.

e That said, it discourages extensive experimentation, and does
not reward long sequences of negative results as data scien-
tists try various options.

The trials and errors associated with exploring text mining op-
erators are more suited to a research environment where persis-
tent effort, with only occasional positive results, is more accept-
able. Hence, LexisNexis and NcState jointly created the BigSE Lab
where university graduate students explore the space of text min-
ing operators proposed by industrial engineers. Funded by a gift
from LexisNexis, the project has no specific deliverables. Rather,
it is fueled by a research question “what can industry and academia
learn from each other”. Based on open source data and tools, the
output of this work is (a) more exposure by commercial engineers
to state-of-the-art methods and (b) more exposure by graduate stu-
dents to more industrial text mining methods (plus research papers
that comment on methods on how to improve those methods).

This paper documents the lessons learned from the BigSE project.
These lessons divide into process insights that comment on meth-
ods for organizing this kind of collaboration and technical lessons
that comment on different operators for text mining.

2 About the Domain: E-Discovery

The specific task explored in this work was E-Discovery. E-
Discovery is part of civil litigation where one party (the producing
party), offers up materials which are pertinent to a legal case. The
producing party makes the materials available to a requesting party.
Upon reception of a request, it is the duty of the producing party



to make an inquiry to find all reasonably relevant materials in their
possession and turn them over to the requesting party. For mod-
ern companies, this may mean searching through millions emails
to find (say) 100 emails that are most relevant to the case at hand.

This process is extensively monitored by both sides involved in
the litigation, as well as the judges overseeing the process. Compa-
nies can be heavily sanctioned if they fail to conduct a reasonable
search in good faith, or if they do not respond in a timely manner!.
If the producing party is perceived to be working in bad faith during
this process, then this can result in court sanctions. Hence, there is
much commercial interest in E-Discovery tools that are thorough
and discourage over-use, misuse, or abuse of procedural tools that
increase cost and result in delay.

Initially, document discovery was a mostly manual process con-
ducted by teams of attorneys. Team members would laboriously
read through all the documents, marking them as important or oth-
erwise with tags based on the document’s relevance to the request.
This method of search is now known as linear review. Baron et
al. [1] report that the review rates for different topics at the TREC
2006 Legal Track ranged from 12.3 to 67.5 documents per hour,
and averaging 24.7. In 2007, the average review rate was around
20 documents per hour, and around 21.5 per hour in 2008 [20].
Roitblat et al. [21] reported that for a large-scale review, 225 at-
torneys were required to each work nearly 2,000 hours to review
1.6 million documents, at a rate of 14.8 documents per hour. Bor-
den [2] cites a review of “fairly technical” documents running at
the rate of 45 documents per hour, and states 50 to 60 documents
per hour as the “e-discovery industry average.”

The time required for linear review depended on several factors
relating to document collection, requests, and reviewer time. The
typical review rate was a few minutes per document. As is to be ex-
pected, with the growth in size of the collection, such a review pro-
cess becomes more and more impractical. To remedy this issue a
higher degree of automation is required. This automation process is
summarized by a widely-cited EDRM Reference Model?. Starting
from “Information management”, where the intent is to incorporate
all the information processing that is required by the organization
before the e-discovery process starts, to “Presentation” which is the
part of the process that prepares depositions, etc.

The LexisNexis experience is that “Document search” represents
60 to 80% of the total cost. Hence, this work focused on improving
that search capability.

3 Process Lessons

This section reviews how BigSE was created and operated. For
those already familiar with BigData projects, some of the lessons
listed in this section will unsurprising (perhaps, even trivial). We
present them nevertheless since, if the reader wants to propose
something like BigSE to their organization, then their management
might find the process lessons of this section most relevant.

3.1 Hardware

Modern Big Data infrastructures make it possible to offer a faster
series of conclusions to industrial partners. For example, using Big-
Data tools, NcState was able to maintain the interest of LexisNexis
engineers with a continual stream of weekly innovations and other
results. BigSE students run their experiments on the NcState High
Performance Computing facility (HPC is a network of 10,000 ma-
chines with 2 to 8 cores on each). A standard run for us is a 25 times
repeat cross-validation experiment where 5 variants of a learner are
run over 25 data sets. Depending on the size of the data and the

Thttps://www.law.cornell.edu/rules/frcp/rule_26
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stackoverflow oa |

How can | join 3 tables and calculate the correct sum of fields from 2 tables, without duplicate
rows?
A havetables A B, C. Table Ais linked to B, and table A is linked to C. | want to join the 3 tables
and find the sum of B.cost and the sum of C.clicks. However, it is not giving me the expected value,
0 and when | select everything without the group by, it is showing duplicate rows. | am expecting the
oW values from B to roll up nto a single sum, and the row values from C to roll up into a single
sum
My query looks like
select A.*, sum(B.cost), sum(C.clicks) from A
oin B
left join C
group by A.id
I tried to group by B.a_id and C.another_field in_a also, but that didn't work.
Here is a DB fiddle with all of the data and the full query: http:/sqlfiddle.com/#!9/768745/6
Notice how the sum fields are greater than the sum of the individual tables? I'm expecting the sums
to be equal, containing only the rows of the table B and C once. | also tried adding distinct but
that didn't help.
I'm using Postgres. (The fiddle is set to MySQL though.)
sal  postgresal
asked 2 mins ago

Chioe.
5340 <9 <45 092

Figure 1: Example Stackoverflow.com data used in this work.

speed of the learner, such a run can take hours to days to terminate
on a single machine. However, on HPC, that same run terminate in
times as short as 30 minutes. Note that it took a few weeks of script
tweaking before we take full advantage of HPC but that was time
well spent since it meant we could:

Lesson 1
Use Big Data to generate more conclusions, sooner.

3.2 Domain Sampling Materials

At the start of the project, LexisNexis spent some effort build-
ing and presenting training materials to introduce NcState to their
business domains.

Those materials were of two forms. Firstly, at the first four
weekly meetings, LexisNexis presented slides describing the busi-
ness domain within which the text mining was to occur. These
briefings were important in learning what mattered, and what did
not matter, to the industrial client.

Lesson 2

In an industrial/academic relationship, it will take some time for
the industrial partner to explain the details of their business to an
academic partner.

The second form of materials that was important to this project
was a “mock” data generator. This “mock”, built by LexisNexis,
generated data representative of the kinds of data seen in indus-
trial practice. Given a random number seed, this “mock” pulled
data from Stackoverflow.com (e.g. see Figure 1) and built a data
set containing the attribute and class distributions seen in current
LexisNexis E-Discovery work.

The importance of the “mock™ was three-fold. Firstly, it gave
NcState ready access to large numbers of non-confidential data sets.
Secondly, when we reported results, it gave LexisNexis confidence
our methods would work on their kind of data. Thirdly, the Lex-
isNexis “mock” taught NcState about the unique features of the
problems faced during E-Discovery. Much of the literature on text
mining Stackoverflow.com assumes “tag-level” while the data more
relevant to E-Discovery is “site-level”, which we characterize as
follows:

e Tag-level: Each data set contains thousands of posts. The
title and body of the posts are concatenated to form the in-
dependent variables for classification. The first tag for the



posts is treated as the class of the post. In each data set, one
specific tag is selected as the “relevant” class and all other
tags are considered as “irrelevant” classes.

o Site-level: generated from the LexisNexis “mock”, which
produces a two-class data set comprising 20000 threads, where
“relevant” examples from one specific sub-site were 2 to 6%
of the data. The task of site-level prediction is to predict
which sub-site a test example belongs to, instead of tag.

The site-level/tag-level distinction is important since much of the
text mining literature on Stackoverflow.com is aimed at tag-level
tasks [13,19,22]. For example, Clayton and Byrne, 2013 [22] have
worked on StackOverflow tag prediction and developed an ACT-
R inspired Bayesian probabilistic model. This approach achieves
a 65% of accuracy by choosing the tag that has the highest log
odds of being correct, given the tag’s prior log odds of occurrence
and adjusting for the log likelihood ratio of the words in the post
being associated with the tag. For another example, see also Kuo,
2011 [13]’s work on predicting the next word in a corpus— which is
an interesting task but not relevant to E-Discovery.

In the following, we glean on the nature of the data to show that
focusing on site-level there are a unique set better choices for text
mining this particular kind of data. Hence:

(Lesson 3 )

Text mining methods should be tuned to specifics of the data set
\used in a particular context.

(Lesson 4 h

After sorting out the CPU farm, the next important task is to build
a “mock” generator for data that is representative of the specific
| target domain.

3.3 Other Management Details
3.3.1 Nondisclosure Agreement

All students and faculty involved in BigSE sign non-disclosure
agreements with LexisNexis. The particular NDA used here was
not particularly restrictive. Researchers at NcState agreed not to
share confidential information gained from LexisNexis as well as
being somewhat circumspect in their publications (e.g. showing
LexisNexis engineers drafts of any paper and asking for comments
and/or corrections). In return, NcState agreed to document all their
analysis of publicly available data sets and tools, shared with Lexis-
Nexis engineers in private Github repositories. The ease with which
these NDAs were developed taught us that:

(Lesson 5 )

Corporate confidentiality is an important concern, but it does not
\need to stifle industry/research interactions regarding Big Data.

(Lesson 6 )

Use of open source tools and data aids collaborative interactions
\ between industry and academia.

3.3.2  Use of Github

The Github repositories proved useful in several ways. Firstly,
LexisNexis engineers have immediate and ready access to any in-
teresting methods and/or findings created by NcState. Secondly,
rather than wasting time writing PowerPoint slides, NcState stu-
dents could report their results using the Markdown tools within
the Github issue report systems. Thirdly, using Github, LexisNexis

developers could monitor and provide quick feedback on the Nc-
State code and issues, as they arose. Lastly, and perhaps more im-
portantly for building a trusting relationship, LexisNexis could see
consistent effort on the part of NcState. SeLAB members are urged
to do all their planning and coding and task management in Github.
This gives LexisNexis an accurate appreciate for all the work con-
ducted by the graduate students. Of course, the use of Github is
only a recommendation, there are several communally used revi-
sion system that offer similar benefits and those could work just as
well.

Lesson 7
Github tremendously simplifies industry/ academia communica-
tion for projects that make extensive use of prototyping.

3.3.3 Staffing and Training

To start-up the lab BigSE, LexisNexis funded several graduate
students for one year. Also, LexisNexis engineers gave talks at
NcState graduate recruitment days (and to the graduate seminar se-
ries). From those talks, several other non-paid graduate students
joined the project as part of their research hours subjects. In all,
BigSE is now staffed by six graduate Ph.D. students who sit in ad-
jacent cubicles and who share their coding tools and tricks.

Newcomers to BigSE are given analysis tasks that the team has
previously completed and asked to reproduce the results or chal-
lenge them. For that initial study, they have access to all prior code
written by the team and their challenge is to understand the parts
and assemble them into a working whole.

LexisNexis and NcState meet each week to present and review
the results. That meeting includes a round robin session where
each graduate student is asked to show some results, or say “pass”.
This session imposes some competetive pressure on the students to
achieve results in order to “show off” in front of their peers and in
front of the LexisNexis engineers. Not every student is expected
to have something to show each week, but it becomes abundantly
clear within the overall team if some student is “passing” all the
time.

While our students have a steep learning curve in their first two
months, by month three they are typically generating results that
surprise and interest LexisNexis. Hence, with the proviso that new-
comers can be immersed in an environment with more experienced
people:

Lesson 8
With the right support structures, novice Big Data graduate stu-
dents can become productive in two to three months.

3.3.4  Schedule and Tasks

As to specific tasks, graduate students are assigned a mix of
projects. Some are very short-term (e.g a one week study on the
merits of TF*IDF vs term frequency) and some are more medium
to long-term that can take weeks to months (e.g. literature reviews
on entity recognition or active learning experiments).

Initially, to build trust between LexisNexis and NcState, the fo-
cus of the work was on very short term projects (weekly incremen-
tal reports). Now, the focus has changed and LexisNexis is prepared
to discuss longer-term projects that deliver incremental value, that
may yet take months to complete. Hence we recommend:

Lesson 9
Initially, build trust with short-term goals, then expand later.

The above lesson is very important, it holds true for all kinds of
collaborations and not just for industrial-academic collaborations.



3.3.5 Preparing for “Critical Audits”

This “portfolio” approach that combines short low-risk tasks with
longer high-risk tasks is useful management trick for speculative
projects. In commercial endeavors, every so often, projects receive
a critical “audit” where engineers have to occasionally prove their
worth to a (perhaps) critical audience that is eager to cut expenses.
So far, there have been no critical audits of the BigSE project, but it
is always best to be prepared. Ensuring a continual supply of con-
clusions (from the short-term projects), is one way to increase the
odds of surviving the critical audit. Hence we advise that:

Lesson 10
It is useful to run a mix of short and long term projects.

4 Technical Lessons

The experiments performed at BigSE are many and varied and
constantly changing. So far, we have focused on methods to im-
prove classification, active learning, and entity recognition.

In order to report within the seven page limit of this paper, we
focus here on the classification work. Note that the following re-
sults are not a claim that the best way to do all text mining is via
the methods championed below. Rather, we say that for the spe-
cific site-level problem explored by LexisNexis for the E-Discovery
work, the following choices have been found to be useful. For other
kinds of data, we would recommend further study to find the results
that work best for those other kinds of data.

4.1 Performance Metrics

There are two contradictory goals that should be achieved ac-
cording to our task:

a) Precision (p) since all the documents being predicted as ’re-
lated’” should be examined by human efforts, a high precision can
greatly reduce the cost of this examination.

b) Recall (r) a high recall can reduce the number of ’related’
documents that we failed to retrieve.

For the purpose of studying both precision and recall, we use:
Fy =2pr/(p+r) as our performance metric.

4.2 Standard Experiment

Starting with LexisNexis’ default settings to their text miners
(stemming and stop words removal for tokenizer, term frequency
for featurization, hashing trick for dimensionality reduction, L2
normalization on rows for normalization, linear SVM for classi-
fier), we modified one option at a time (e.g. swapped the hashing
trick for Tf*idf). Different options in a single process (e.g. hash-
ing trick and TF-IDF selection in dimensionality reduction) were
compared in each experiment with 5 by 5 cross-validation (20% as
training sample and 80% as testing sample since in real tasks, the
training sample is always less). This rig was applied to 10 tag-level
problems and 15 site-level problems (using an SVM with a linear
kernel as the classifier).

4.3 Comment on External Validity

There are several validity threats to the design of this study:

a) The above experiments show results from a limited number of
text mining methods. The space of known text mining methods is
truly vast and the following studies represent just a small portion of
the total space.

b) All the above used data that we have characterized as tag-
level or site-level samples from posts in Stackoverflow.com. For
other kinds of data, we recommend repeating this analysis to find
the right text mining methods for that kind of data.

Due to these threats to external validity, we make no presump-
tion that the following conclusions work best for all text mining

applications. We only assert that the following work better than
some alternatives in our domain.
That said, we assert that the following is externally valid:

Lesson 11
Commercial organizations can outsource at least some of their
their validation work to university partners.

Further, as part of that validation process:

Lesson 12

The university partners can sometimes find better choices that
those currently employed by the commercial organization (e.g.
see the SMOTE results, below).

The rest of this section offers support for these two lessons.

4.4 Results

The results are presented in Figure 2. Three interesting results in
those plots are listed below.

1. Performance deltas: In Figure 2, the tag-level problems are
shown on the left and the site-level problems are shown on the right.
The results show a low valley on the left and higher plateau on the
right; i.e. methods that work well for site-level do not work well
for tag-level. This result underlines Lesson 3&4 on the importance
of testing via data that is particular to specific domains.

2. Low IQR: In Figure 2, the solid lines at the top show the
median (50th percent) value and the dotted lines at bottom show
the IQR (the inter-quartile range calculated from the (75th-25th)
percentile). Note that, usually, the dotted lines are close to zero; i.e.
the variance in our conclusions across multiple samples is mostly
very low. Hence:

Lesson 13
The performance variance is small enough to make definitive
statements about what methods work best for site-level problems.

3. Blurred results: It is difficult to distinguish between some the
results since, looking at Figure 2 (a) and (b) and (c), the overall
benefit of certain treatments is marginal. That is:

Lesson 14
Not all standard text mining methods are powerful or useful.

The rest of this section discusses more specific results.

4.4.1 Tokenization

Tokenization is the very first step in natural language process-
ing. It removes the spirit of symbols by identifying the most basic
units which need not to be decomposed in the subsequent process-
ing [25]. Shingling introduces phrases as unit token. A word-based
w-grams shingling captures contiguous sequences of words as unit
tokens and each unit token has w words [5]. Bigram and trigram
shingles uses w=2 and w=3-grams, respectively. Stemming and
stop words removal combines words that have same meaning and
removes very frequently used words. An example of stemming and
stop words removal would be to convert “i want to eat apple since
i like eating apples” to “want eat apple since like eat apple”. While
stemming and stop words are considered an effective way to im-
prove the text classification performance [27], some contradictory
evidences deprecates these techniques [19,22].

The cost of these tokenizers is very low (each can be completed
in a simple pass through the data) but their observed benefit is
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are tag-level while the remaining are site-level data sets generated from our “mock” data generator.



small. As shown in Figure 2(a), the average improvement of stem-
ming and stop words removal in median value is 1% on tag-level
data and 6% on site-level data sets. Note that deltas are very close
to the IQRs of 3%,4% for tag-level,site-level (respectively). Hence:

Lesson 15
Despite their prominence in the literature, the benefit of stemming
and stop words and shingling for our data sets is minimal.

4.4.2  Featurization

Featurization is the process which transforms the tokens of each
document into a vector of weights of each unique token, which can
be used to train the classifier [15]. Term frequency, also known
as word count [15], would convert “want eat apple since like eat
apple” to {eat: 2, apple: 2, want: 1, since: 1,like: 1}. Tf-idf
weight calculates not only the word count, but also the number of
documents each token appears in , calculated as follows:

D
tfidf (t,d) = |t € d| - log (m) W

where D, T are all documents and tokens and ¢t € T,d € D. The
intuition behind Tf-idf is that the more frequent a token appears
and the less documents it appears in, the more important it is. Tf-
idf is a popular feature for text categorization [4, 19].

Term frequency performs no worse than tf-idf, Figure 2(b). Hence:

Lesson 16
Despite its prominence in the literature, the added value of Tf*idf
for our data sets is minimal.

4.4.3 Dimensionality Reduction

Dealing with the tables of data containing all the words in En-
glish, would mean processing a very large number of columns. A
useful method for removing noise and reducing the memory costs
of learning is dimensionality reduction.

Two methods for finding those weights are the hashing trick and
Td-idf. Feature selection by tf-idf score sorts tokens by their tf-
idf score (see Equation 1) then and picks the N highest-scored to-
kens. The Hashing trick is a single-pass method that turns features
into entries of a matrix by applying a hash function to the features.
The number of columns of the output matrix can be pre-defined
and thus dimensionality reduction can be done by applying hash-
ing trick [26]. For example, the hashing trick might convert {eat:
2, apple: 2, want: 1, since: 1,like: 1} into {3, 3, 1.

Figure 2(c) shows a sample of our results of using Td*idf to se-
lect for an increasing number of tokens (due to space reasons, not
all the results are shown). In all our data sets, no additional benefit
was seen after using 4000 terms.

As shown in Figure 2(d), compares the results of the hashing
trick with Tf*idf selecting for 4000 words. The differences of these
two methods in median value is no bigger than the IQRs. Hence:

Lesson 17
When reducing memory costs of storing our kind of text mining
data in RAM, a simple hashing trick will suffice,

4.4.4 Normalization

Normalization is a process which adjust the values measured on
different scales to a notionally common scale.

Normalization on columns transforms a value x in a column to
(x — min) /(max — min) (where min, max come from that column).

In general data mining tasks, the weight of different features are
measured on different scales. Normalization on columns of the
feature matrix eliminates these differences among features.

L2 Normalization on rows takes feature vector of each docu-
ment and divides it by its L2 norm. It is the standard normalization
method for text categorization [8]. The main purpose of imple-
menting L2 normalization on rows is to rescale the vector of feature
weights to unit length. For example, if results of applying the hash-
ing trick are {3, 3, 1}, then L2-normalization would divide each
number by /(3% 432 + 12) to produce {0.69,0.69,0.23}.

As shown in Figure 2(e), column normalization offers little to no
improvement over no normalization. However, L2 Normalization
on rows can add up to 20% of the F; score.

Lesson 18
Normalizing rows can be more useful than normalizing columns.

4.4.5 Data Balancing

In imbalanced data sets, the target class are a small minority
within the data. The LexisNexis data is highly imbalanced with the
target class may be as low as 2% of the data. Yet prior to BigSE,
LexisNexis was not exploring data balancing methods.

Figure 2(f) shows experiments with applying the SMOTE data
balancer to our data. SMOTE over-samples the minority class by
introducing synthetic examples along the line segments joining any
pair of nearby real samples in neighborhood. Proposed in 2002
[6], SMOTE is a very effective over-sampling method and has been
widely applied during the past decades [3,9, 14].

As shown in Figure 2(f), the average improvement of SMOTE in
median value is 22% on tag-level data and 17% of site-level data.
Note that, in these SMOTE experiments, we SMOTEd the training
set but the distributions in test set were left “as is”, Also, the aver-
age IQR for that plot is 4%,9% on tag-level,site-level data; i.e. is
much smaller than the median improvement. Hence we say:

Lesson 19
Class balancing (e.g. with SMOTE) is very useful for this kind of
text mining.

4.4.6 Classification

Classifier guesses new labels using models built from prior data.
SVM is a widely-used learning model for many data mining tasks
[10,19]. SVM’s use some kernel that maps the raw data into an-
other space where the data might be more separable. Linear SVM
is of the simplest kernel function but others include polynomial,
radial bias, sigmoid, etc.

There are many other kinds of classifiers. Naive Bayes repre-
sents a family of simple probabilistic classifiers which has been
studied extensively since 1950s. Multinomial Naive Bayes is espe-
cially designed for text categorization [16] and always considered
as a baseline method for text categorization.

Decision Tree learners are a popular model for classification.
CART is one implementation of decision tree learners that has been
proved useful in prior text mining applications [18].

Figure 2(g) compares linear SVM with other kinds of classi-
fiers. The results from that figure are very clear: linear SVM out-
performs Naive Byes and decision tree learning (with CART).

Figure 2(h) studies the effect of different kernel functions in
SVM. Note that linear SVM is the clear winner.



Lesson 20
Linear SVM is the recommended classifier for site-level data.

S Conclusions

This paper has listed the lessons learned from one the BigSE
LexisNexis/NcState partnership. This lab has found that. most of
the operator choices made by LexisNexis are demonstrably better
than many other choices. However, in some cases, NcState found
certain operators much faster than others (e.g. required only a sin-
gle pass of the data). Also, in one case, NcState showed that one
operator (SMOTE) not currently used by LexisNexis offered useful
improvements in their text miners. SMOTE is now scheduled for
inclusion in the next release of the LexisNexis tools.

More specifically, for the site-level problem that is relevant to
LexisNexis’ E-Discovery problem, BigSE recommends:

1. Tokenization: Stemming and removal of stop words were
generally useful. Shingling offered no noticeable benefits.

2. Featurization: Contrary to popular recommendation, term
frequency (TF) proved to work just as well as using TF-IDF.

3. Normalization: Use L2 normalization on the rows.

4. Dimensionality Reduction: Given how there is so little dif-
ference between hashing trick and TF-IDF, using the hashing
trick in place of TF-IDF offered an added benefit of needing
fewer dimensions (and less memory) and taking less time
(TF-IDF needs two passes of the data); the hashing trick can
be applied on each row, in a single pass of the data).

5. Data Balancing: The low prevalence of "interesting" class
in the test collection was handled well by SMOTE.

6. Classification: It was surprising to note that a simple Linear
SVM outperformed other kernels.

As mentioned above, we make no presumption that the above list
of choices works best for all text mining applications (but it is a
set of choices that work better than others, in our domain). As for
other domains, we would recommend that organizations assemble
their own validation team to find the best choices in those domains.

The LexisNexis/NcState collaboration has been useful for both
parties. LexisNexis got to explore more text mining operators while
NcState got to expose their research students to the realities of real-
world industrial data mining. Also, BigSE has proved to be a path-
way from research to employment (e.g. BigSE students will work
as summer interns at LexisNexis). Based on these results, Lexis-
Nexis management has extended the collaboration till the end of
2016 (and further work in 2017 and beyond is begin discussed).

As to future work, as mentioned above, these studies have ex-
plored only a small portion of the very large space of operators
available in text mining. Our next phase is to explore automatic
tuning methods that can explore that large space. In order to ex-
plore a larger decision space as well as avoiding local optimum,
heuristic search algorithms such as differential evolution, GALE,
and NSGA-II will be applied to tune the decisions for a better ap-
proach [7,12,23]. We are working on this to achieve both less
number of comparisons and better solutions.

Another useful future direction is active learning. One constant
challenge in the LexisNexis work is gaining access to labelled data.
In theory, active learning could reduce the cost of humans reading
and classifying documents during E-Discovery. For example in-
stead of 20% of the data, only a thousand samples will be selected
and then used for training. The performance of prediction will rely
heavily on how representative the selected samples are, and active
learning is the key method to achieve it [24].
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